3.177 \(\int \frac{\tan ^2(c+d x)}{a+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=96 \[ -\frac{2 a^2 \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{3/2}}+\frac{a \tan (c+d x)}{d \left (a^2-b^2\right )}-\frac{b \sec (c+d x)}{d \left (a^2-b^2\right )} \]

[Out]

(-2*a^2*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/((a^2 - b^2)^(3/2)*d) - (b*Sec[c + d*x])/((a^2 - b^2
)*d) + (a*Tan[c + d*x])/((a^2 - b^2)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0988934, antiderivative size = 96, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {2727, 3767, 8, 2606, 2660, 618, 204} \[ -\frac{2 a^2 \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{3/2}}+\frac{a \tan (c+d x)}{d \left (a^2-b^2\right )}-\frac{b \sec (c+d x)}{d \left (a^2-b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^2/(a + b*Sin[c + d*x]),x]

[Out]

(-2*a^2*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/((a^2 - b^2)^(3/2)*d) - (b*Sec[c + d*x])/((a^2 - b^2
)*d) + (a*Tan[c + d*x])/((a^2 - b^2)*d)

Rule 2727

Int[((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[a/(a^2 - b^
2), Int[(g*Tan[e + f*x])^p/Sin[e + f*x]^2, x], x] + (-Dist[(b*g)/(a^2 - b^2), Int[(g*Tan[e + f*x])^(p - 1)/Cos
[e + f*x], x], x] - Dist[(a^2*g^2)/(a^2 - b^2), Int[(g*Tan[e + f*x])^(p - 2)/(a + b*Sin[e + f*x]), x], x]) /;
FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*p] && GtQ[p, 1]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2606

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\tan ^2(c+d x)}{a+b \sin (c+d x)} \, dx &=\frac{a \int \sec ^2(c+d x) \, dx}{a^2-b^2}-\frac{a^2 \int \frac{1}{a+b \sin (c+d x)} \, dx}{a^2-b^2}-\frac{b \int \sec (c+d x) \tan (c+d x) \, dx}{a^2-b^2}\\ &=-\frac{a \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{\left (a^2-b^2\right ) d}-\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right ) d}-\frac{b \operatorname{Subst}(\int 1 \, dx,x,\sec (c+d x))}{\left (a^2-b^2\right ) d}\\ &=-\frac{b \sec (c+d x)}{\left (a^2-b^2\right ) d}+\frac{a \tan (c+d x)}{\left (a^2-b^2\right ) d}+\frac{\left (4 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right ) d}\\ &=-\frac{2 a^2 \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{\left (a^2-b^2\right )^{3/2} d}-\frac{b \sec (c+d x)}{\left (a^2-b^2\right ) d}+\frac{a \tan (c+d x)}{\left (a^2-b^2\right ) d}\\ \end{align*}

Mathematica [A]  time = 0.202612, size = 152, normalized size = 1.58 \[ \frac{\sqrt{a^2-b^2} (a \sin (c+d x)+b \cos (c+d x)-b)-2 a^2 \cos (c+d x) \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{d (a-b) (a+b) \sqrt{a^2-b^2} \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^2/(a + b*Sin[c + d*x]),x]

[Out]

(-2*a^2*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]]*Cos[c + d*x] + Sqrt[a^2 - b^2]*(-b + b*Cos[c + d*x] +
 a*Sin[c + d*x]))/((a - b)*(a + b)*Sqrt[a^2 - b^2]*d*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])*(Cos[(c + d*x)/2] +
 Sin[(c + d*x)/2]))

________________________________________________________________________________________

Maple [A]  time = 0.053, size = 117, normalized size = 1.2 \begin{align*} -2\,{\frac{{a}^{2}}{d \left ( a-b \right ) \left ( a+b \right ) \sqrt{{a}^{2}-{b}^{2}}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) }-8\,{\frac{1}{d \left ( 8\,a-8\,b \right ) \left ( \tan \left ( 1/2\,dx+c/2 \right ) +1 \right ) }}-8\,{\frac{1}{d \left ( 8\,a+8\,b \right ) \left ( \tan \left ( 1/2\,dx+c/2 \right ) -1 \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^2/(a+b*sin(d*x+c)),x)

[Out]

-2/d*a^2/(a-b)/(a+b)/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))-8/d/(8*a-8*b)/(t
an(1/2*d*x+1/2*c)+1)-8/d/(8*a+8*b)/(tan(1/2*d*x+1/2*c)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.67045, size = 684, normalized size = 7.12 \begin{align*} \left [\frac{\sqrt{-a^{2} + b^{2}} a^{2} \cos \left (d x + c\right ) \log \left (\frac{{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} + 2 \,{\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) - 2 \, a^{2} b + 2 \, b^{3} + 2 \,{\left (a^{3} - a b^{2}\right )} \sin \left (d x + c\right )}{2 \,{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} d \cos \left (d x + c\right )}, \frac{\sqrt{a^{2} - b^{2}} a^{2} \arctan \left (-\frac{a \sin \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) \cos \left (d x + c\right ) - a^{2} b + b^{3} +{\left (a^{3} - a b^{2}\right )} \sin \left (d x + c\right )}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} d \cos \left (d x + c\right )}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

[1/2*(sqrt(-a^2 + b^2)*a^2*cos(d*x + c)*log(((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 + 2
*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a
^2 - b^2)) - 2*a^2*b + 2*b^3 + 2*(a^3 - a*b^2)*sin(d*x + c))/((a^4 - 2*a^2*b^2 + b^4)*d*cos(d*x + c)), (sqrt(a
^2 - b^2)*a^2*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c)))*cos(d*x + c) - a^2*b + b^3 + (a^3 -
 a*b^2)*sin(d*x + c))/((a^4 - 2*a^2*b^2 + b^4)*d*cos(d*x + c))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{2}{\left (c + d x \right )}}{a + b \sin{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**2/(a+b*sin(d*x+c)),x)

[Out]

Integral(tan(c + d*x)**2/(a + b*sin(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 2.05295, size = 144, normalized size = 1.5 \begin{align*} -\frac{2 \,{\left (\frac{{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (a\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b}{\sqrt{a^{2} - b^{2}}}\right )\right )} a^{2}}{{\left (a^{2} - b^{2}\right )}^{\frac{3}{2}}} + \frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b}{{\left (a^{2} - b^{2}\right )}{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}}\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

-2*((pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))*a^2/(a^2
- b^2)^(3/2) + (a*tan(1/2*d*x + 1/2*c) - b)/((a^2 - b^2)*(tan(1/2*d*x + 1/2*c)^2 - 1)))/d